A macroscopic kinetic model for DNA polymerase elongation and high-fidelity nucleotide selection
نویسندگان
چکیده
The enzymatically catalyzed template-directed extension of ssDNA/primer complex is an important reaction of extraordinary complexity. The DNA polymerase does not merely facilitate the insertion of dNMP, but it also performs rapid screening of substrates to ensure a high degree of fidelity. Several kinetic studies have determined rate constants and equilibrium constants for the elementary steps that make up the overall pathway. The information is used to develop a macroscopic kinetic model, using an approach described by Ninio [Ninio J., 1987. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities. Proc. Natl. Acad. Sci. U.S.A. 84, 663-667]. The principle idea of the Ninio approach is to track a single template/primer complex over time and to identify the expected behavior. The average time to insert a single nucleotide is a weighted sum of several terms, including the actual time to insert a nucleotide plus delays due to polymerase detachment from either the ternary (template-primer-polymerase) or quaternary (+nucleotide) complexes and time delays associated with the identification and ultimate rejection of an incorrect nucleotide from the binding site. The passage times of all events and their probability of occurrence are expressed in terms of the rate constants of the elementary steps of the reaction pathway. The model accounts for variations in the average insertion time with different nucleotides as well as the influence of G + C content of the sequence in the vicinity of the insertion site. Furthermore the model provides estimates of error frequencies. If nucleotide extension is recognized as a competition between successful insertions and time delaying events, it can be described as a binomial process with a probability distribution. The distribution gives the probability to extend a primer/template complex with a certain number of base pairs and in general it maps annealed complexes into extension products.
منابع مشابه
Kinetics of the DNA polymerase pyrococcus kodakaraensis
The polymerase chain reaction is one of the most important reactions in molecular biology. Single stranded DNA is copied in a complex series of steps, at the core of which lies the action of the DNA polymerase. At each nucleotide along the template, the polymerase screens the dNTP pool until it fi nds the complementary dNTP. The insertion of each dNMP is a balance between high fi delity and rap...
متن کاملA macroscopic kinetic model for DNA polymerase elongation and high-fidelity nucleotide election
The enzymatically catalyzed template-directed extension of ssDNA/primer complex is an important reaction of extraordinary complexity. The DNA polymerase does not merely facilitate the insertion of dNMP, but it also performs rapid screening of substrates to ensure a high degree of fidelity. Several kinetic studies have determined rate constants and equilibrium constants for the elementary steps ...
متن کاملEfficient fidelity control by stepwise nucleotide selection in polymerase elongation
Polymerases select nucleotides before incorporating them for chemical synthesis during gene replication or transcription. How the selection proceeds stepwise efficiently to achieve sufficiently high fidelity and speed is essential for polymerase function. We examined step-by-step selections that have conformational transition rates tuned one at time in the polymerase elongation cycle, with a co...
متن کاملCharacterization of the Elongation Complex of Dengue Virus RNA Polymerase
Dengue virus (DENV) infects 50-100 million people worldwide per year, causing severe public health problems. DENV RNA-dependent RNA polymerase, an attractive target for drug development, catalyzes de novo replication of the viral genome in three phases: initiation, transition, and elongation. The aim of this work was to characterize the mechanism of nucleotide addition catalyzed by the polymera...
متن کاملFidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies.
The fidelity of Escherichia coli DNA polymerase III (pol III) is measured and the effects of beta, gamma processivity and epsilon proofreading subunits are evaluated using a gel kinetic assay. Pol III holoenzyme synthesizes DNA with extremely high fidelity, misincorporating dTMP, dAMP, and dGMP opposite a template G target with efficiencies finc = 5.6 x 10(-6), 4.2 x 10(-7), and 7 x 10(-7), res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational biology and chemistry
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2005